28 research outputs found

    Mixed-valence state in Yb2CuGe6

    Get PDF
    We present here temperature dependent X-ray photoemission measurements on polycrystalline Yb2CuGe6. The analysis of these data shows the change in the effective valence, determined directly from the 4f intensity ratio, as a function of temperature

    袩芯褌褉褨泄薪褨 褋懈褋褌械屑懈 Lu-V-{Ge, Sn}

    Get PDF
    The isothermal sections of the phase diagrams of the Lu鈥揤鈥揋e and Lu-V-Sn ternary systems were constructed at 870 K over the whole concentration range using X-ray diffraction and EPM analyses. In the Lu-V-Ge system a formation of the substitutional solid solution Lu5Ge3-xVx based on the Lu5Ge3binary compound (Mn5Si3 structure type) was found up to 6 at. % V. Insertion of the V atoms in the structure of the LuGe2 binary germanide (ZrSi2structure type, up to 5 a褌. % V) results in the formation of the LuV0,15Ge2 ternary phase (CeNiSi2 structure type, space group Cmcm, a=0.40210(4),b=1.5661(1), c=0.38876(3) nm), which corresponds to the limit composition of the interstitial solid solution LuVxGe2. The interaction between the elements in the Lu-V-Sn system results in the formation of one ternary compound LuV6Sn6 (SmMn6Sn6-type, space group P6/mmm, a=0.5503(2), c=0.9171(4) nm) at investigated temperature.袉蟹芯褌械褉屑褨褔薪褨 锌械褉械褉褨蟹懈 写褨邪谐褉邪屑 褋褌邪薪褍 锌芯褌褉褨泄薪懈褏 褋懈褋褌械屑 Lu鈥揤鈥揋e 褨 Lu-V-Sn 锌芯斜褍写芯胁邪薪褨 蟹邪 褌械屑锌械褉邪褌褍褉懈 870 K 胁 锌芯胁薪芯屑褍 泻芯薪褑械薪褌褉邪褑褨泄薪芯屑褍 褨薪褌械褉胁邪谢褨 屑械褌芯写邪屑懈 褉械薪褌谐械薪芯褎邪蟹芯胁芯谐芯, 褉械薪褌谐械薪芯褋褌褉褍泻褌褍褉薪芯谐芯 褨 屑褨泻褉芯褋褌褉褍泻褌褍褉薪芯谐芯 邪薪邪谢褨蟹褨胁. 袙 褋懈褋褌械屑褨 Lu-V-Ge 薪邪 芯褋薪芯胁褨 斜褨薪邪褉薪芯褩 褋锌芯谢褍泻懈 Lu5Ge3(褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 Mn5Si3) 胁褋褌邪薪芯胁谢械薪芯 褍褌胁芯褉械薪薪褟 褌胁械褉写芯谐芯 褉芯蟹褔懈薪褍 蟹邪屑褨褖械薪薪褟 Lu5Ge3-xVx 写芯 胁屑褨褋褌褍 6 a褌. % V. 袙泻谢褞褔械薪薪褟 邪褌芯屑褨胁 V 胁 褋褌褉褍泻褌褍褉褍 斜褨薪邪褉薪芯谐芯 谐械褉屑邪薪褨写褍 LuGe2 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 ZrSi2, 写芯 胁屑褨褋褌褍 5 a褌. % V) 锌褉懈胁芯写懈褌褜 写芯 褍褌胁芯褉械薪薪褟 褌械褉薪邪褉薪芯褩 褎邪蟹懈 LuV0,15Ge2 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 CeNiSi2, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 Cmcm, a=0,40210(4), b=1,5661(1), c=0,38876(3) 薪屑), 褟泻邪 胁褨写锌芯胁褨写邪褦 谐褉邪薪懈褔薪芯屑褍 褋泻谢邪写褍 褌胁械褉写芯谐芯 褉芯蟹褔懈薪褍 胁泻谢褞褔械薪薪褟 LuVxGe2. 袙蟹邪褦屑芯写褨褟 泻芯屑锌芯薪械薪褌褨胁 褍 褋懈褋褌械屑褨 Lu-V-Sn 蟹邪 褌械屑锌械褉邪褌褍褉懈 写芯褋谢褨写卸械薪薪褟 褏邪褉邪泻褌械褉懈蟹褍褦褌褜褋褟 褍褌胁芯褉械薪薪褟屑 褌械褉薪邪褉薪芯褩 褋锌芯谢褍泻懈 LuV6Sn6(褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 SmMn6Sn6, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 P6/mmm, a=0,5503(2), c=0,9171(4) 薪屑)

    袩芯褌褉褨泄薪邪 褋懈褋褌械屑邪 Er-Cr-Ge

    Get PDF
    The isothermal section of the phase diagram of the Er鈥揅r鈥揋e ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er鈭扖r鈭扜e system results in the formation of two ternary compounds: ErCr6Ge6 (MgFe6Ge6-type, space group P6/mmm, Pearson symbol hP13; a = 5.15149(3), c = 8.26250(7) 呛; RBragg = 0.0493, RF = 0.0574) and ErCr1-褏Ge2 (CeNiSi2-type, space group Cmcm, Pearson symbol oS16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) 呛; RBragg = 0.0473, RF = 0.0433) at investigated temperature. For the ErCr1-xGe2 compound, the homogeneity region was determined (ErCr0.28-0.38Ge2; a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) 呛).袉蟹芯褌械褉屑褨褔薪懈泄 锌械褉械褉褨蟹 写褨邪谐褉邪屑懈 褋褌邪薪褍 锌芯褌褉褨泄薪芯褩 褋懈褋褌械屑懈 Er鈥揅r鈥揋e 锌芯斜褍写芯胁邪薪懈泄 蟹邪 褌械屑锌械褉邪褌褍褉懈 1070 K 胁 锌芯胁薪芯屑褍 泻芯薪褑械薪褌褉邪褑褨泄薪芯屑褍 褨薪褌械褉胁邪谢褨 屑械褌芯写邪屑懈 褉械薪褌谐械薪芯褎邪蟹芯胁芯谐芯, 褉械薪褌谐械薪芯褋褌褉褍泻褌褍褉薪芯谐芯 褨 屑褨泻褉芯褋褌褉褍泻褌褍褉薪芯谐芯 邪薪邪谢褨蟹褨胁. 袙蟹邪褦屑芯写褨褟 泻芯屑锌芯薪械薪褌褨胁 褍 褋懈褋褌械屑褨 Er鈥揅r鈥揋e 蟹邪 褌械屑锌械褉邪褌褍褉懈 写芯褋谢褨写卸械薪薪褟 褏邪褉邪泻褌械褉懈蟹褍褦褌褜褋褟 褍褌胁芯褉械薪薪褟屑 写胁芯褏 褌械褉薪邪褉薪懈褏 褋锌芯谢褍泻 ErCr6Ge6 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 MgFe6Ge6, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 P6/mmm, 褋懈屑胁芯谢 袩褨褉褋芯薪邪 hP13; a = 5,15149(3), c = 8,26250(7) 呛; RBragg = 0,0493, RF = 0,0574) 褨ErCr1-褏Ge2 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 CeNiSi2, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 Cmcm, 褋懈屑胁芯谢 袩褨褉褋芯薪邪 oS16, a = 4,10271(5), b = 15,6652(1), c = 3,99017(4) 呛; RBragg = 0,0473, RF = 0,0433). 袛谢褟 褋锌芯谢褍泻懈 ErCr1-褏Ge2 胁懈蟹薪邪褔械薪邪 芯斜谢邪褋褌褜 谐芯屑芯谐械薪薪芯褋褌褨 (Er小r0,28-0,38Ge2; a = 4,10271(5)-4,1418(9), b = 15,6652(1)-15,7581(4), c = 3,99017(4)-3,9291(1) 呛)

    袉蟹芯褌械褉屑褨褔薪懈泄 锌械褉械褉褨蟹 锌芯褌褉褨泄薪芯褩 褋懈褋褌械屑懈 Ho鈥揅u鈥揝n 锌褉懈 670 K

    Get PDF
    The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho鈥揅u鈥揝n system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.袙蟹邪褦屑芯写褨褟 泻芯屑锌芯薪械薪褌褨胁 褍 锌芯褌褉褨泄薪褨泄 褋懈褋褌械屑褨 Ho-Cu-Sn 写芯褋谢褨写卸械薪邪 蟹邪 褌械屑锌械褉邪褌褍褉懈 670 K 胁 锌芯胁薪芯屑褍泻芯薪褑械薪褌褉邪褑褨泄薪芯屑褍 褨薪褌械褉胁邪谢褨 屑械褌芯写邪屑懈 褉械薪褌谐械薪褨胁褋褜泻芯褩 写懈褎褉邪泻褑褨褩 褨 褉械薪褌谐械薪芯褋锌械泻褌褉邪谢褜薪芯谐芯 邪薪邪谢褨蟹褍. 袩褉懈 670K 胁 褋懈褋褌械屑褨 褍褌胁芯褉褞褞褌褜褋褟 褔芯褌懈褉懈 褌械褉薪邪褉薪褨 褋锌芯谢褍泻懈: HoCuSn (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 LiGaGe, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪P63mc), Ho3Cu4Sn4 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 Gd3Cu4Ge4, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 Immm), HoCu5Sn (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌CeCu5Au, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 Pnma) 褨 Ho1.9Cu9.2Sn2.8 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 Dy1.9Cu9.2Sn2.8, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪P63/mmc). 袙褋褌邪薪芯胁谢械薪芯 褍褌胁芯褉械薪薪褟 褌胁械褉写芯谐芯 褉芯蟹褔懈薪褍 胁泻谢褞褔械薪薪褟 薪邪 芯褋薪芯胁褨 斜褨薪邪褉薪芯褩 褋锌芯谢褍泻懈 HoSn2(褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 ZrSi2) 写芯 胁屑褨褋褌褍 5 a褌. % Cu

    袙蟹邪褦屑芯写褨褟 泻芯屑锌芯薪械薪褌褨胁 褍 锌芯褌褉褨泄薪褨泄 褋懈褋褌械屑褨 Gd-Mn-Sn 锌褉懈 873 褨 673 K

    Get PDF
    The interaction of the components in the Gd-Mn-Sn ternary system was studied using the methods of X-ray and microstructure analyses, in the whole concentration range. The phase diagrams of the Gd-Mn-Sn system were constructed at 873 and 673 K. At both temperature of investigation the Gd-Mn-Sn system is characterized by existence of two ternary compounds: GdMn6Sn6 (MgFe6Ge6 structure type, space group P6/mmm) and Gd4Mn4Sn7 (Zr4Co4Ge7 structure type, space group I4/mmm). The formation of the interstitial solid solution GdMn褏Sn2 based on GdSn2 (ZrSi2-type) binary compound was found up to 10 at. % Mn at 873 K and 673 K. The existence of the substitutional solid solution based on GdMn2 (MgCu2-type) was observed up to 5 at.% Sn and 3 at. % Sn at 873 K and 673 K, respectively.袦械褌芯写邪屑懈 褉械薪褌谐械薪芯褎邪蟹芯胁芯谐芯 褨 屑褨泻褉芯褋褌褉褍泻褌褍褉薪芯谐芯 邪薪邪谢褨蟹褨胁 写芯褋谢褨写卸械薪芯 胁蟹邪褦屑芯写褨褞 泻芯屑锌芯薪械薪褌褨胁 褍 锌芯褌褉褨泄薪褨泄 褋懈褋褌械屑褨 Gd-Mn-Sn 褍 锌芯胁薪芯屑褍 泻芯薪褑械薪褌褉邪褑褨泄薪芯屑褍 褨薪褌械褉胁邪谢褨 褌邪 锌芯斜褍写芯胁邪薪褨 写褨邪谐褉邪屑懈 褎邪蟹芯胁懈褏 褉褨胁薪芯胁邪谐 蟹邪 褌械屑锌械褉邪褌褍褉 873 K 褨 673 K. 袟邪 芯斜芯褏 褌械屑锌械褉邪褌褍褉 写芯褋谢褨写卸械薪薪褟 胁 褋懈褋褌械屑i 褍褌胁芯褉褞褞褌褜褋褟 写胁褨 褌械褉薪邪褉薪褨 褋锌芯谢褍泻懈 GdMn6Sn6(褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 MgFe6Ge6, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 P6/mmm) 褨 Gd4Mn4Sn7 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 Zr4Co4Ge7, 锌褉芯褋褌芯褉芯胁邪 谐褉褍锌邪 I4/mmm). 袧邪 芯褋薪芯胁i 斜i薪邪褉薪芯谐芯 褋褌邪薪i写褍 GdSn2蟹褨 褋褌褉褍泻褌褍褉芯褞 褌懈锌褍 ZrSi2 胁褋褌邪薪芯胁谢械薪芯 褨褋薪褍胁邪薪薪褟 褌胁械褉写芯谐芯 褉芯蟹褔懈薪褍 胁泻谢褞褔械薪薪褟 GdMn褏Sn2 写芯 胁屑褨褋褌褍 10 邪褌. % Mn 蟹邪 褌械屑锌械褉邪褌褍褉 873 K 褨 673 K. 袧邪 芯褋薪芯胁褨 斜褨薪邪褉薪芯褩 褋锌芯谢褍泻懈 GdMn2 (褋褌褉褍泻褌褍褉薪懈泄 褌懈锌 MgCu2) 褍褌胁芯褉褞褦褌褜褋褟 褌胁械褉写懈泄 褉芯蟹褔懈薪 蟹邪屑褨褖械薪薪褟 写芯 胁屑褨褋褌褍 5 邪褌. % Sn 锌褉懈 873 K 褨 写芯 胁屑褨褋褌褍 3 邪褌. % Sn 锌褉懈 673 K
    corecore